www.mymathscloud.com
© MyMathsCloud
GCSE/iGCSE Maths Formulae Sheet

Statistics	
Frequency Density	
Pie chart	Angle $=\frac{\text { category frequency }}{\text { total }} \times 360$
Cumulative frequency	This is a running total of the frequencies
Box Plot	
Fractions/Decimals/Percentages	
Simplifying Fractions	Step 1: Find a factor of both numbers i.e. a number that fits in both the numerator AND denominator Step 2: Say how many times for each Step 3: Check whether you can do steps 1 and 2 again.
Fraction Of Amount	$\frac{a}{b}$ of amount Step 1: Divide amount by b Step 2: Multiply answer found by a
Improper to Mixed	Step 1: Divide the numerator by the denominator Step 2: Write down the whole number answer to step 1 Step 3: Put the remainder in the numerator. The new denominator remains the same as that of the original improper fraction.
Mixed to Improper	Step 1: Multiply the whole number by the fraction's denominator Step 2: Add the numerator to step 1 and this is the new numerator Step 3: write the result the top of the original denominator
+ and - Fractions	Need a common denominator (the smallest number that that both the numerator and denominator fit into)
\times Fractions	Don't need common denominator. Can cancel diagonally or vertically, not horizontally.
\div Fractions	Don't need a common denominator. "Keep change flip"
Decimal to Fraction	Write over $10,100,1000$ etc depending on how many places after the decimal and simplify.
Decimal to Percent	Multiply by 100
Fraction to Decimal	Write as an equivalent fraction over $10,100,1000$ etc and then easy to divide by this number OR Use short division if can't write as an equivalent fraction
Fraction to Percent	Turn into a decimal and then just a decimal to percent question i.e. multiply decimal found by 100
Percent to Decimal	Divide by 100
Percent to Fraction	Write over 100 and simplify
Geometry	
Straight Line Equation	- Slope intercept $y=m x+c$ - General $a x+b y+d=0$ To get this form we put all the terms from form 1 on one side and multiply all terms by the denominators to get rid of the fractions (if we have them)
Straight Line Gradient/Slope Between 2 Points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$	$\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { OR } \frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ In English this formula just says: subtract the y coordinates and divide by the answer we get by subtracting the x coordinates. It doesn't matter which way round we subtract, just so long as we keep the same direction
Coordinates of midpoint of 2 points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$	$\begin{aligned} & \text { midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1+}+y_{2}}{2}\right) \\ & \text { In English this formula just says: Add the } x \text { coordinates and divide } \\ & \text { by 2 (i.e. find the average) and add the } y \text { coordinates and divide by } \\ & 2 \text { (i.e. find the average) } \end{aligned}$
Distance Between 2 Points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$	distance $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

- Way 4: If given another line old perpendicular to \Rightarrow locate m for this line and don't fact that perpendicular slopes multiply to make -1 .

Ifa line has slope 2 (note: this means the same as $\frac{2}{2}$) then a perpendicular slope is $-\frac{1}{2}$ If a line has slope $-\frac{2}{3}$ then a perpendicular slope is $\frac{3}{2}$
Ifa line has slope $\frac{1}{2}$ then a perpendicular slope is -3

- Way 5: If given 2 points \Rightarrow use formula $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Step 2: Find the y intercept c using one of the following 2 ways

- Way 1: read it off the graph (if given graph this is where the graph crosses the y axis y with the y value). $\quad y=m x+c$

Make sure the slope m from step 1 is plugged in and solve/re-arrange for c using algebra. Make sure you plug in the point that the line passes through, not just any Circles $(x-a)^{2}+(y-b)^{2}=r^{2}$ centre (a, b), radius r

Extra helpful facts to remember

